Insecticide Resistance
نویسنده
چکیده
Insecticide resistance is an increasing problem faced by those who need insecticides to efficiently control medical, veterinary and agricultural insect pests. In many insects, the problem extends to all major groups of insecticides. Since the first case of DDT resistance in 1947, the incidence of resistance has increased annually at an alarming rate. It has been estimated that there are at least 447 pesticide resistant arthropods species in the world today (Callaghan, 1991). Insecticide resistance has also been developed by many insects to new insecticides with different mode of action from the main four groups. The development of resistance in the fields is influenced by various factors. These are biological, genetic and operational factors. Biological factors are generation time, number of offspring per generation and migration. Genetic factors are frequency and dominance of the resistance gene, fitness of resistance genotype and number of different resistance alleles. These factors cannot be influenced by man. However, such as treatment, persistence and insecticide chemistry, all of which may and therefore timing and dosage of insecticide application should be operational factors. Pesticide resistance is the adaptation of pest population targeted by a pesticide resulting in decreased susceptibility to that chemical. In other words, pests develop a resistance to a chemical through natural selection: the most resistant organisms are the ones to survive and pass on their genetic traits to their offspring (PBS, 2001). Pesticide resistance is increasing in occurrence. In the 1940s, farmers in the USA lost 7% of their crops to pests, while since the 1980s, the percentage lost has increased to 13, even though more pesticides are being used (PBS,2001). Over 500 species of pests have developed a resistance to a pesticide (Anonymous, 2007). Other sources estimate the number to be around 1000 species since 1945 (Miller, 2004). Today, pests once major threats to human health and agriculture but that were brought under control by pesticides are on the rebound. Mosquitoes that are capable of transmitting malaria are now resistant to virtually all pesticides used against them. This problem is compounded because the organisms that cause malaria have also become resistant to drugs used to treat the disease in humans. Many populations of the corn earworm, which attacks many agricultural crops worldwide including cotton, tomatoes, tobacco and peanuts, are resistant to multiple pesticides (Berlinger, 1996). Despite many years of research on alternative methods to control pests and diseases in crops, pesticides retain a vital role in securing global food production and this will remain the case for the foreseeable future if we wish to feed an ever growing population.
منابع مشابه
Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test
<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...
متن کاملGut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.)
The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous...
متن کاملModelling the impact of declining insecticide resistance with mosquito age on malaria transmission
Background. The evolution of insecticide resistance can lead to an increase in the entomological indicators of malaria transmission, such as mosquito survival and blood feeding rates, thus threatening efforts to control malaria. Yet, there is little evidence from the field that malaria control programmes are failing due to insecticide resistance. One explanation for this apparent contradiction ...
متن کاملThe impact of insecticide resistance on Culex pipiens immunity
Because of their role as vectors of diseases, the evolution of insecticide resistance in mosquitoes has been intensively investigated. Insecticide resistance is associated to a wide range of pleiotropic effects on several key life-history traits of mosquitoes such as longevity and behavior. However, despite its potential implications in pathogen transmission, the effects of insecticide resistan...
متن کاملInsecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?
Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment...
متن کاملGut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel)
BACKGROUND Symbiotic bacteria affect insect physiology and ecology. They may also mediate insecticide resistance within their hosts and thereby impact pest and vector control practices. Here, we document a novel mechanism of insecticide resistance in which a gut symbiont of the tephritid pest fruit fly Bactrocera dorsalis enhances resistance to the organophosphate insecticide trichlorphon. RE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012